OPTIMIZACIJA KORELACIJE SILE ODSIJECANJA I KVALITETA OBRAĐENE POVRŠINE ODSJEČAKA PRI VISOKOBRZINSKOM ODSIJECANJU

OPTIMIZATION OF CORELLATION OF SHEAR CUTTING FORCE AND QUALITY OF TREATED PARTS SURFACE DURING HIGH PRODUCTIVE SHEAR CUTTING

Fuad Hadžikadunić, Dušan Vukojević, Nedeljko Vukojević

Univerzitet u Zenici, Mašinski fakultet u Zenici Fakultetska 1, Zenica Bosna i Hercegovina

Ključne riječi: visokoučinske makaze, sila odsijecanja, kvalitet površine odsječka.

REZIME

U okviru kompleksne analize rada visokoučinskih makaza, kao polaznog elementa tehnološkog lanca proizvodnje specifičnog proizvoda, definira se opseg tehničko-tehnoloških parametara samog procesa odsijecanja šipkastih profila. U okviru takve analize, definira se učešće svakog od parametara tehnološkog procesa na dvije bitne izlazne karakteristike procesa, a to su sila pri odsijecanju i kvalitet obrađene površine odsječaka. Metodom planiranog eksperimenta vrši se optimizacija odnosa takvih parametara, jer je izuzetno bitno kao izlaz dobiti kvalitetne odsječke, ali i povoljno uticati na vijek obradnog sistema preko sile pri odsijecanju. Ovakva analiza je veoma bitna za ukupnu ocjenu dinamičke stabilnosti kompleksnih sistema ovakve i slične vrste. Korištenjem spomenute naučne metodologije, u teoretskom i eksperimentalnom domenu, moguće je odrediti povoljan odnos tehnoloških i konstruktivnih parametara elemenata procesa visokobrzinskog odsijecanja.

Key words: high-productive shears, shear cutting force, quality of treated part surface.

ABSTRACT

During a complexe analysis of high-productive shear work, as an initial part of technological chain in a specific product manufacturing, an extent of technical-technological parameters of round bar shear cutting process is defined. In that analysis, an influence of each parameter of techological process on two main characteristics, shear cutting force and quality of treated part surface, are explained. By method of experimental design, an optimization of corellation of that parameters is done, because of treated surface high quality and a long life of treatment system. This kind of analysis is very important for complete evaluation of dynamic stability of such systems. With this scientific methodology, in theoretical and experimental ways, an optimal ratio of shear cutting process parameters can be established.

1. UVOD

Glavni su ciljevi modeliranja i optimizacije obradnih procesa povećanje proizvodnosti, ekonomičnosti, ukupne kvalitete proizvoda ili pojedinih segmenata kvalitete (obrađene površine, postojanosti alata, itd.) te smanjenje utroška materijala, energije, vremena obrade i troškova obrade po jedinici proizvoda. Teško je teorijski pomoću analitičkih modela pouzdano odrediti parametre procesa obrade, kao što su: trošenje alata, optimalni geometrijski oblik, deformacione pojave u alatu, granični stupanj deformacije, tribološki procesi, opterećenje alata, jer je u svakom procesu obrade prisutno više utjecajnih faktora i njihovih interakcija. Zato je primjena eksperimenta i analiza tako dobivenih rezultata nezamjenjiva u razvoju novih i usavršavanju postojećih obradnih procesa i sistema. Analitičko definiranje dovoljno pouzdanih matematskih modela je vrlo složeno i zahtijeva aproksimacije, što utiče na tačnost dobivenih rezultata, [1]. Budući da su procesi obrade stohastičkog karaktera puno tačnije rezultate daje stohastičko modeliranje utemeljeno na korištenju statističkih metoda i eksperimentalnih rezultata. Gotovo sve metode optimizacije podrazumijevaju poznavanje matematskog modela procesa, što je uvjet za inoviranje i revitalizaciju procesa ili sistema. Matematičkim modeliranjem moguće je ostvariti povećanje produktivnosti procesa, odnosno iskorištenost obradnog sistema, poboljšanje kvaliteta proizvoda, smanjenje troškova pripreme, itd. Stabilizacija procesa obrade može se vršiti u više pravaca i to kroz: povećanje tačnosti dimenzija obratka, umanjenja hrapavosti obrađenih površina, umanjenja vibracija i utrošene energije, umanjenje opterećenja alata ili komponenti mašine za obradu, umanjenja troškova obrade, povećanje vijeka trajanja alata, itd. Shodno sagledavanju konkretnih proizvodnih uslova u konkretnom preduzeću, a vezano za ulogu i karakter ranije navedenog obradnog centra, konstatovano je da se povremeno dešava destabilizacija procesa odsijecanja koja se ogleda kroz zaglavljivanje šipkastih profila u reznom segmentu te otkaza mašine ili kroz povremenu pojavu grubo stepenastih odrezanih površina koje čine škart. Kako se u konkretnom slučaju radi o korištenju šipkastih profila značajne cijene po jedinici dužine, velikoserijskom karakteru proizvodnje, itd., postoji namjera da se definiraju značajnosti pojedinih parametara tehnologije odsijecanja i njihovi optimalni nivoi, ali ne samo sa aspekta povećanja geometrijske i masene tačnosti odsječaka, nego i sa aspekta umanjenja opterećenja alata i elemenata kinematskog lanca mašine. Dakle sila odsijecanja se ne prati samo sa tehnološkog aspekta nego se prati i njen učinak na konstrukciju kinematskog lanca mašine za odsijecanje. Naravno, ista se poredi sa teoretski primjenjivim obrascima gdje se očekuje nesaglasnost.

2. DIZAJN EKSPERIMENTALNIH ISTRAŽIVANJA

Sila rezanja, koja se prati kao izlazni parametar, zavisi od niza parametara, kao što su: površina i oblik poprečnog presjeka materijala, čvrstoće materijala, brzine deformisanja, načina odsijecanja, temperature, aksijalnog zazora, poprečnog zazora, te ugla nagiba šipke, [4]. Zbog veoma teških uslova pri realizaciji eksperimenta u mogućnosti se bilo pratiti samo nekoliko od navedenih parametara, i to: brzina deformisanja, čvrstoća materijala, promjer pripremka i osni zazor između fiksnog i pokretnog dijela alata za odsijecanje. Prema odabranoj metodologiji prikupljanja i obrade eksperimentalnih rezultata potrebno je definirati plan matricu izvođenja eksperimentalnih ispitivanja, [2,3]. Eksperiment se razmatra u dva karakteristična slučaja sa uticajem faktora: (A, B, C, D₁) – prvi eksperimentalni blok, (A, B, C, D₂) – drugi eksperimentalni blok.

Oznaka faktora eksperim enta	Značenje	Nivo 1	Nivo 2	Stepen slobode
А	Brzina deformisanja	0,74 m/s – mala remenica	1,14 m/s – velika remenica	1
В	Čvrstoća / Tvrdoća	282 N/mm ² / 88 HB – materijal AlMg5	345 N/mm ² / 102 HB – materijal AlCuPbBi54	1
С	Promjer šipke	Ø 20 mm	Ø 33 mm	1
D	Osni zazor reznog i vodećeg alata	0,05 mm	0,5 mm	1
I	Analiziraće se i uti	caj interakcija u eksp	erimentu, kako sljed	i:
	А	XB BXC A	X C	

Tabela 1. Parametri i nivoi za dizajn eksperimenta.

Ovaj pristup je specifičan, ali logičan zbog izgleda linearnog dijagrama eksperimenta i diktirajućih kombinacija, tabela 2.

Najmanji ortogonalni niz koji sadrži zahtjevani broj stepeni slobode je L_8 (2⁷) sa 7 X (2-1) = 7 stepeni slobode.

Tabela 2. Raspored eksperimentalnih tačaka sa položajem nivoa.

TT 1 1 1	D1	, .	· + ·	1	×, •	1.
Tabela 3	Plan	matrica	izvodenia	eksperimenta	sa uvrstenim	nodacima
100000 5.	1 10011		1210000111	ensper intentier	See erristentent	pourcernier.

	Randomizirani redosljed izvođenja eksperimenta (oznaka eksperiment.	Eksp. br.	A	B	A X B	C	AXC	BXC	e 7	NAPO!	N (MPa) - PC V2	OLUGA V3	Y SREDN JE
	tačke)		1	2	5	4	5	0	/	11	12	15	
	1 (20_1)	1	mala remenica	AlMg5	1	Ø 20	1	1	1	-71,5	-68,2	-70,3	-70
PA I	3 (33_3)	2	mala remenica	AlMg5	1	Ø 33	2	2	2	-94,7	-96,8	-96,3	-95,933
GRU	2 (20_2)	3	mala remenica	AlCu5PbBi54	2	Ø 20	1	2	2	-81,1	-82,2	-74,238	-79,179
	4 (33_4)	4	mala remenica	AlCu5PbBi54	2	Ø 33	2	1	1	-103,5	-106,2	-106,74	-105,48
	1 (20_9)	5	velika remenica	AlMg5	2	Ø 20	2	1	2	-68	-69,4	-72,3	-69,9
III Ve	2 (33_10)	6	velika remenica	AlMg5	2	Ø 33	1	2	1	-86,44	-84,2	-82,5	-84,38
GRUI	3 (20_11)	7	velika remenica	AlCu5PbBi54	1	Ø 20	2	2	1	-77,1	-79,7	-78,5	-78,433
	4 (33_12)	8	velika remenica	AlCu5PbBi54	1	Ø 33	1	1	2	-98,8	-100,08	-102,74	-100,54
						D = 0,05	mm						

	Randomizirani redosljed izvođenja eksperimenta (oznaka eksperiment. tačke)	Eksp br.	А	В	AXB	С	AXC	BXC	e	NAPO	N (MPa) - PO	DLUGA	Y SREDNJ E
	2 (20_6)	1	mala remenica	AlMg5	1	Ø 20	1	1	1	-73,52	-81,62	-78,13	-77,757
II VI	1 (33_5)	2	mala remenica	AlMg5	1	Ø 33	2	2	2	-99,8	-99,3	-101	-100,033
GRU	3 (20_7)	3	mala remenica	AlCu5PbBi5 4	2	Ø 20	1	2	2	-99,46	-63,98	-90,23	-84,557
	4 (33_8)	4	mala remenica	AlCu5PbBi5 4	2	Ø 33	2	1	1	-115,46	-113,31	-114,95	-114,573
	3 (20_15)	5	velika remenica	AlMg5	2	Ø 20	2	1	2	-76,29	-72,70	-82,03	-77,006
VI A	4 (33_16)	6	velika remenica	AlMg5	2	Ø 33	1	2	1	-80,7	-89,21	-91,16	-87,02
GRUF	1 (20_13)	7	velika remenica	AlCu5PbBi5 4	1	Ø 20	2	2	1	-84,49	-91,16	-88	-87,883
	2 (33_14)	8	velika remenica	AlCu5PbBi5 4	1	Ø 33	1	1	2	-103,77	-101,5	-97,21	-100,827
						D = 0,5 1	nm						

Tabela 3. (nastavak) plan matrica izvođenja eksperimenta sa uvrštenim podacima.

Tabela 4. Tabela odziva

	А	В	AXB	С	AXC	BXC	error
Nivo 1	-38,75522	-37,99054	-38,62053	-37,41691	-38,36469	-38,57703	-38,44625
Nivo 2	-38,33938	-39,09594	-38,46595	-39,66957	-38,72179	-38,50945	-38,64023
Delta	0,41584	1,1054	0,15458	2,25266	0,3571	0,06758	0,19398

Slika 1. S/n odziv za pojedine faktore i interakcije.

Analizirajući tabelu 4 treba prvo poredati analizirane efekte od najvećeg do najmanjeg prema definisanim razlikama, pa je redosljed sljedeći:

Tabela 5. Redosljed uticajnosti.

	С	В	А	AXC	error	AXB	BXC
Delta	2,25266	1,1054	0,41584	0,3571	0,19398	0,15458	0,06758

Na osnovu tabele 5. analizirajući pojedinačne nivoe bitnih faktora A, B i C, odnosno tražeći njihove **maksimalne vrijednosti** nivoa preporučene vrijednosti su sljedeće:

	A	B	С
Nivo 1	-38,75522	-37,99054	-37,41691
Nivo 2	-38,33938	-39,09594	-39,66957

Tabela 6. Određivanje maksimalnog nivoa.

Određivanje procjene pretpostavljenog ("predicted") S/N odnosa bazirano na odabranim nivoima jakih efekata je kako sljedi:

$$\overline{\eta} = \sum_{i=1}^{8} \frac{\overline{\eta}_i}{n} = \frac{\overline{\eta}_1 + \dots + \overline{\eta}_8}{8} \qquad \dots (1)$$

Dakle, tzv. PREDICTED VALUE je izražena sa vrijednošću $\hat{\eta} = -36,66035$. Nakon ove analize potrebno je izvesti POTVRDNI EKSPERIMENT koji će se odraditi sa navedenim parametrima odgovarajećih nivoa, kako je utvrđeno: A2, B1, C1, D1

Eksp.	Α	В	С	D	SI	LA / NAP	ON	S/N
br.	1,14 m/min	materijal	mm	mm	Y1	Y2	¥3	$\eta_{verif.}$
20_9_P	velika remenica	AlMg5	Ø 20	0,05	-72,3	-71	-76,1865	-37,28967

TABELA 7. VRIJEDNOSTI VERIFIKACIONOG EKSPERIMENTA.

$$\eta_{verif} = S/N = -10\log\frac{(-72,3)^2 + (-71)^2 + (-76,1865)^2}{3} = -37,28967 \qquad \dots (2)$$

Ako se sada uporede vrijednosti $\eta_{\text{verif}} = -37,28967$ i $\hat{\eta} = -36,66035$ vidi se da su vrijednosti veoma blizu što pokazuje opravdanost analize i zaključaka o uticaju navedenih faktora. Također, može se iz osnovnog obrasca za izračunavanje S/N vrijednosti izračunati napon pri optimalnim parametrima odsijecanja prema obrascu:

$$\hat{\sigma} = 10^{-\frac{\eta}{20}} = 10^{-\frac{-36,66035}{20}}, \quad \hat{\sigma} = 68,07968 \text{ N/mm}^2 \dots (3)$$

		VERIF	IKACIONI '	TEST REZUL	LTATI	IZRAČ	UNATO	DELTA
Eks.br.	Y1	Y2	Y3	Y sred	$\eta_{verifikaciono}$	$\eta_{izračunato}$	σ (N/mm ²)	$\left \eta_{\mathit{verif}}-\eta_{\mathit{izrac}} ight $
20_9_P	-72,3	-71	-76,1865	-73,16217	-37,28967	-36,6603	-68,07968	0,62937

Tabela 8. Uporedne vrijednosti verifikacionog eksperimenta i izračunatih vrijednosti.

Za drugi dio tabele 3 analiza je potpuno identična pa će se prezentirati završni dio analize.

Tabela 9. Tabela odziva

	Α	В	AXB	С	AXC	BXC	error
Nivo 1	-39,42144	-38,592917	-39,19568	-38,28109	-38,84497	-39,20516	-39,17286
Nivo 2	-38,8757175	-39,704242	-39,10147	-40,01607	-39,45218	-39,092	-39,12430
Delta	0,54572	1,111325	0,15458	1,734975	0,60721	0,11316	0,048555

Tabela 10. Redosljed uticajnosti.

	С	В	AXC	А	BXC	AXB	error
Delta	1,734975	1,111325	0,60721	0,54572	0,11316	0,09421	0,048555

Određivanje procjene pretpostavljenog ("predicted") S/N odnosa bazirano na odabranim nivoima jakih efekata je kako sljedi:

$$\overline{\eta} = \sum_{i=1}^{8} \frac{\overline{\eta}_i}{n} = \frac{\overline{\eta}_1 + \dots + \overline{\eta}_8}{8} = -39,14858 \qquad \dots (4)$$

$$\widehat{\eta} = \overline{\eta} + (\overline{42} - \overline{\eta}) + (\overline{R1} - \overline{\eta}) + (\overline{C1} - \overline{\eta})$$

$$\eta = \eta + (A2 - \eta) + (B1 - \eta) + (C1 - \eta)$$
$$\hat{\eta} = \overline{A2} + \overline{B1} + \overline{C1} - 2\overline{\eta} = -37,4525675 \qquad \dots (5)$$

1 α β β α β

Eksp. br.	А	В	С	D	SILA / NAPON		S/N	
	1,14 m/min	materijal	mm	mm	Y1	Y2	Y3	$\eta_{verif.}$
20-15-P	velika remenica	AlMg5	Ø 20	0,5	-76,29	-72,7	-82,03	-37,74137

$$\eta_{verif} = S/N = -10\log\frac{(-76,29)^2 + (-72,7)^2 + (-82,03)^2}{3} = -37,7413664 \qquad \dots (6)$$

Ako se sada uporede vrijednosti $\eta_{\text{verif}} = -37,7413664$ i $\hat{\eta} = -37,4525675$ vidi se da su vrijednosti veoma blizu što pokazuje opravdanost analize i zaključaka o uticaju navedenih faktora. Napon pri optimalnim parametrima odsijecanja prema obrascu je:

$$\hat{\sigma} = 10^{-\frac{\hat{\eta}}{20}} = 10^{-\frac{-37,4525675}{20}}$$
, $\hat{\sigma} = 74,58102968$ N/mm² ... (7)

Eks.br.		VERIFIK	KACIONI T	EST REZUL	IZRA	DELTA		
	Y1	Y2	Y3	Y sred	$\eta_{verifikaciono}$	$\eta_{izračunato}$	σ (N/mm ²)	$\left \eta_{\textit{verif}}-\eta_{\textit{izrač}} ight $
20-15-P	-76,29	-72,7	-82,03	-77,0067	-37,741366	-37,4525	-74,5810297	0,2888064

Tabela 12. Uporedne vrijednosti verifikacionog eksperimenta i izračunatih vrijednosti.

Da bi se mogao ocijeniti sveukupni uticaj zazora u eksperimentalno dobijenim vrijednostima izvršena su dodatna ispitivanja geometrijske tačnosti odsječenih polufabrikata po svim eksperimentalnim tačkama u dvije ravni, tabela 13.

Slika 2. Eksperimentalni oblik impulsne sile odsijecanja za specifičnu eksperimentalnu tačku.

Karakte ristike	Zazor	u _{sr}	\mathbf{f}_{sr}	b _{sr}	ϕ_{sr}	σ _{sr} poluga	Karakte ristike	Zazor	u _{sr}	\mathbf{f}_{sr}	b _{sr}	ϕ_{sr}	$\substack{\sigma_{sr}\\ poluga}$
-	(mm)	(mm)	(mm)	(mm)	(°)	(N/mm ²)	0,74 m/s AlMg5	0,05	8,533	0,247	1,117	0,03974	70
0,74 m/s AlMg5	0,05	5,94	0,199	1,998	0,09960	70	0,74 m/s AlMg5	0,5	10,127	0,51	0,8775	0,03244	77,75
0,74 m/s AlMg5	0,5	6,18	0,217	1,618	0,08074	77,75	0,74 m/s AlCu5Pb Bi54	0,05	10,62	0,17	1,2742	0,04384	79,2
0,74 m/s AlCu5Pb Bi54	0,05	4,427	0,067	1,263	0,0630	79,2	0,74 m/s AlCu5Pb Bi54	0,5	8,573	0,13	0,925	0,02693	84,55
0,74 m/s AlCu5Pb Bi54	0,5	6,693	0,0917	0,8375	0,04180	84,55	1,14 m/s AlMg5	0,05	10	0,43	1,592	0,0482	69,9
1,14 m/s AlMg5	0,05	7,64	0,287	1,918	0,09562	69,9	1,14 m/s AlMg5	0,5	12,86	0,452	1,1633	0,0352	77
1,14 m/s AlMg5	0,5	6,42	0,186	2,115	0,10536	77	1,14 m/s AlCu5Pb Bi54	0,05	11,746	0,306	1,301	0,0394	78,43
1,14 m/s AlCu5Pb Bi54	0,05	7,013	0,075	1,275	0,0640	78,43	1,14 m/s AlCu5Pb Bi54	0,5	11,807	0,327	0,9	0,02727	87,88
1,14 m/s AlCu5Pb Bi54	0,5	5,527	0,085	1,0625	0,0531	87,88							

Tabela 13. Uticaj zazora sa aspekta geometrije i ukupne dinamičke sile odsijecanja.

Tabela 14. Poređenje eksperimentalnih i analitičkih vrijednosti sile smicanja.

		Eksperir	Analitički						
Zazor	Eksp. napon σ _{sr}	Sila na poluzi P	Prečnik	Brzina	Materijal	Кр	$\sigma_{\rm m}$	F	Sila smicanja
mm	N/mm ²	Ν	mm	m/s	-	-	N/mm ²	mm ²	Ν
0,05	79,2	125 481	20	0.74	AICuSDbDi54	1.0	240	314,159	76.006
0,5	84,55	134 481		0,74	AICu3F0DI34	1,0	340		70 900
0,05	78,43	124 737		1.14	AICu5PhBi54	1.1	340		84 507
0,5	87,88	139 767		1,14	AICuJF0DIJ4	1,1	540		04 397

0,05	70	111 330		0,74	AlMg5	1,0	282		63 787
0,05	69,9	111 171		1 145	AlMg5	11	282		70 166
0,5	77	122 463		1,110	1111185	-,-	202		, 0 100
0,05	105,48	167 758		0,74	AlCu5PbBi54	1.0	388		238 036
0,5	114,57	182 215	ŀ			1,0			238 930
0,05	100,54	159 901		1.14	AlCuSDbDi54	1.1	200		262 820
0,5	100,82	160 347	22	1,14	AICust 0DI34	1,1	300	855 200	202 829
0,05	95,93	152 570	33	0,74	A1Ma5	1.0	282	833,299	174 276
0,5	100	159 043			Allvigs	1,0	203		174270
0,05	84,38	134 200		1,14	A11Ma5	1 1	1 202		101 702
0,5	87,02	138 399			Allvig5	1,1	283		191 /05

3. ZAKLJUČAK

Provedena metodologija eksperimentalnog dizajna je ukazala na vrijednosti posmatranih parametara: veća brzina deformisanja, manji prečnik, materijal manje čvrstoće u oba eksperimentalna bloka, uz adekvatne aksijalne zazore za prvi i drugi blok, u cilju postizanja "konstruktivne" karakteristike tehnologije odsijecanja, tj. sile pri odsijecanju minimalne vrijednosti. Takva sila utiče povoljno na povećanje postojanosti reznog alata, umanjenje utrošene energije, te povoljan dinamički efekat na ostale elemente kinematskog lanca pogona mašine. Može se izvući opšti zaključak da za dobijanje geometrijski tačnijih odsječaka povoljniji je veći osni zazor, a za ostvarenje manje sile odsijecanja povoljniji je manji osni zazor, osim u slučaju III podgrupe kada za oba slučaja, i geometriju i silu odsijecanja odgovaraju manji osni zazori. To ukazuje na činjenicu da je uticaj zazora na geometrijsku tačnost odsječaka i formirane sile potrebne za odsijecanje obrnuto proporcionalan, tj. da postižući veći geometrijski kvalitet odsječaka povećava se sila potrebna za odsijecanje, a to znači da se više opterećuju elementi kinematskog lanca mašine, povećava trenje itd. Primijećeno je odstupanje eksperimentalnih i analitičkih vrijednosti sile pri odsijecanju. Analitički obrasci tretiraju isključivo slučaj čistog smicanja uz povećanje sile odsijecanja usljed trošenja alata i povećanja razmaka između noževa u toku smicanja zbog djelovanja momenta zakretanja (povećanje 20 do 40%), i učešće brzine deformisanja sa koeficijentom povećanja do 20%. Time se potvrđuje postavljena hipoteza da poopćeni obrasci mogu odgovarati samo za određene uslove, a za uslove gdje se ne odvija čisto smicanje nego smicanje sa savijanjem i uslovima povišenih brzina deformisanja, potrebno je odrediti konkretne vrijednosti sila odsijecanja.

4. LITERATURA

[1] Jurković M: Matematičko modeliranje inženjerskih procesa i sistema, Mašinski fakultet, Bihać, 1999,

- [2] Phadke S. M: Quality engineering using robust design, AT&T Bell Laboratories, USA, 1989,
- [3] Stuart G.P. Taguchi methods, Addison-Wesley Publ. Comp., USA, 1993,
- [4] Nikolić D.: Teorija procesa obrade, Mašinski fakultet, Beograd, 1999.